Skip to main content

How Computers Understand Human Language?

How Computers Understand Human Language?

Photo by Alex Knight on Unsplash
Natural languages are the languages that we speak and understand, containing large diverse vocabulary. Various words have several different meanings, speakers with different accents and all sorts of interesting word play. But for the most part human can roll right through these challenges. The skillful use of language is a major part what makes us human and for this reason the desire for computers that understand or speak human language has been around since they were first conceived. This led to the creation of natural language processing or NLP.
Natural Language Processing is a disciplinary field combining computer science and linguistics. There is an infinite number of ways to arrange words in a sentence. We can't give computers a dictionary of all possible sentences to help them understand what humans are blabbing on about. So, an early and fundamental NLP problem was deconstructing sentences into small pieces which could be more easily processed.
In school you learned about nine fundamental types of English words.
  1.     Nouns
  2.     Pronouns
  3.     Articles
  4.     Verbs
  5.     Adjective
  6.     Adverbs
  7.     Prepositions
  8.     Conjunctions
  9.     Interjections
These are all called parts of speech. There are all sorts of sub-categories too like singular vs. plural nouns and superlative vs. comparative adverbs but we are not going into that. Knowing a word’s type is definitely useful, but unfortunately there are a lot of words that have multiple meanings like rose and leaves which can be used as nouns or verbs.
A digital dictionary alone is not enough to resolve this ambiguity so computers also need to know some grammar. Fro this, phrase structure rules were developed which encapsulate the grammar for a language. For example in english there's a rule that says a sentence can be comprised of a noun phrase followed by verb phrase. Noun phase can be an article like “the” followed by a noun or they could be an adjective followed by a noun. And you can make rules like this for an entire language. Then using these rules it is fairly easy to construct was called parse tree which not only tag every word with a likely part of speech but also reveals how the sentence is constructed.
The smaller chunks of data allow computers more easily access, process and respond to information. Equivalent processes are happening every time you do a voice search like ‘where is the nearest pizza’. The computer can recognize this is a ‘where’ question, knows that you want the noun ‘pizza’ and the dimension you care about is the ‘nearest’. The same process applies to “what is the biggest giraffe?” or “who sang thriller?” By treating language almost like legos, computers can be quite adept at natural language tasks. They can also answer questions and also process commands like ‘set alarm for to 2:20’. But as you have probably experienced they fail when you start getting fancy and they can no longer parse the sentence correctly or capture your intent.
I shall also mention that phrase structure rules and similar methods that codify language can be used by computers to generate natural language text. This works well when data is stored in a web of semantic information where entities are linked to one another in meaning for relationships, providing all the ingredient you need to craft informational sentences.
These two processes, parsing and generating text are fundamental components of natural language chat bots. Chat bot is a computer program that chat with you. Early chat bots were primarily rule based where experts would encode hundred of rules mapping what a user might say, to how a program should reply. But this was difficult to maintain and limited the possible sophistication.
A famous early example was Eliza, created in the mid 1960 at MIT. This was a chatbot that took on the role of a therapist and used basic syntactic rules to identify content in written exchanges, which it would turn around and ask the user about. Some times it felt very much like human-human communication but sometimes it would make simple and even comical mistakes. Chat bots today are more advanced. It has come a long way in the last fifty years and can be quite convincing today.
Simultaneous innovation in the algorithms for processing natural language is moving from hand crafty rules to machine learning techniques that could lead automatically from existing data sets of human language. Today the speech recognition systems with the best accuracy are using deep learning.

Related Read: Deep Learning: A Quick Overview

Comments

  1. Understanding the features of our language was difficult for computers. However, building a clear grammatical structure made it possible to overcome this barrier.

    ReplyDelete
  2. With the help of the fact that every scientist made a great contribution to writing the necessary algorithm that helped robots understand and listen to the language of people.

    ReplyDelete

Post a comment

Popular posts from this blog

How Big Data Analytics Can Help You Improve And Grow Your Business?

Big Data Analytics There are certain problems that can only solve through big data. Here we discuss the field big data as "Big Data Analytics". The big data came into the picture we never thought how commodity hardware is used to store and manage the data which is reliable and feasible as compared to the costly sources. Now let us discuss a few examples of how big data analytics is useful nowadays. When you go to websites like Amazon, Youtube, Netflix, and any other websites actually they will provide some field in which recommend some product, videos, movies, and some songs for you. What do you think about how they do it? Basically what kind of data they generated on these kind websites. They make sure to analyze properly. The data generated is not small it is actually big data. Now they analysis these big data they make sure whatever you like and whatever you are the preferences accordingly they generate recommendations for you. If you go to Youtube you have noticed it kn…

AI Vs Machine Learning Vs Deep Learning

AI Vs Machine Learning Vs Deep Learning Artificial intelligence, deep learning and machine learning are often confused with each other. These terms are used interchangeably but do they do not refer to the same thing. These terms are closely related to each other which makes it difficult for beginners to spot differences among them. The reason I think of this puzzle is that AI is classified in many ways. It is divided into subfields with respect to the tasks AI is used for such as computer vision, natural language processing, forecasting and prediction, with respect to the type of approach used for learning and the type of data used. Subfields of Artificial Intelligence have much in common which makes it difficult for beginners to clearly differentiate among these areas. Different approaches of AI can process similar data to perform similar tasks. For example Deep learning and SVM both could be used for object detection task. Both have pros and cons. In some cases Machine Learning is …

Introduction to Data Science: What is Big Data?

What Is Big Data First, we will discuss how big data is evaluated step by step process. Evolution of Data How the data evolved and how the big data came. Nowadays the data have been evaluated from different sources like the evolution of technology, IoT(Internet of Things), Social media like Facebook, Instagram, Twitter, YouTube, many other sources the data has been created day by day. 1. Evolution of  Technology We will see how technology is evolved as we see from the below image at the earlier stages we have the landline phone but now we have smartphones of Android, IoS, and HongMeng Os (Huawei)  that are making our life smarter as well as our phone smarter. Apart from that, we have heavily built a desktop for processing of Mb's data that we were using a floppy you will remember how much data it can be stored after that hard disk has been introduced which can stored data in Tb. Now due to modern technology, we can be stored data in the cloud as well. Similarly, nowadays we noticed …

The Limits of Artificial Intelligence

If you are here, it means that you are familiar with term artificial intelligence. Either you have read about it in school or have seen it in sci-fi movies or somewhere else. Talking about the limitations of AI, let me ask you one simple question first, do you know the definition of AI? You might be thinking to answer me with a yes, yes I know what is artificial intelligence. But what if I tell you that AI is a buzzword and it is almost impossible to properly define. It is this way because the definition of artificial intelligence is moving. People don’t call the things AI that they used to call. For example, a problem that seemed too complex to be solved by human and was solved by AI algorithm is no longer a problem of AI. Playing chess, is one of the examples. It was considered the peek level of artificial intelligence back in previous century. Now it hardly fits the criteria for AI. It is presented to the world as a super power that when given to a computer, it magically starts li…

How To Become A Successful Programmer?

How To Become A Successful Programmer? I have heard many novice programmers saying I want to get better at programming but there is hardly a slight improvement in their skills. I have observed that most of them say they want to get better but that is just a wish. They do not really mean it. They mere wish to improve their skills. They do not work for it. Your wish does not guarantee that you will become a successful programmer. Many other people who have developed an interest in computer programming do not know how to reach to a point where they will be called successful programmers. They either keep wandering in the middle of nowhere or just give up. The same response is for them too as it was for the wishers. Your interest does not guarantee that you will succeed. Programming is a field which requires intensive work to master. Along with improving your technical knowledge of programming, you need to work on your interest. You need to develop a habit of not giving up. You need to…

What is Multithreading? JAVA Multithreading Tutorial

It is almost end of 2017. The computer has evolved throughout its age from a simple, huge machine which was used for just simple numerical calculations to a small and swift electronic device which is affecting almost every aspect of our life. There are a lot of efforts involved in these enhancements in both hardware and software. Powerful hardware has been invented, and robust software techniques have been designed to improve hardware efficiency. One of these methods is multithreading and this is what we are going to talk about.
Multithreading is the ability of a single processing unit to execute multiple programs concurrently, apparently supported by the operating system. Multithreading is achieved either by multithreaded architecture or by software techniques or by both. All processors and OSs today support multi-thread execution.
We are talking about multithreading but what actually a thread is? A thread is a single unit a single processor can execute. The group consists of the sh…

5 Tips for Computer Science Students

You are in college now so I am skipping the basics the go to class do your homework study for tests stay out of the hospital. These are not all important pieces of advice but I am sure you have heard them. Instead, let’s talk computer science. Here are some tips I have specially collected by talking to students who wish they’d heard them when they were students. Listen up.

Seek help when you need it. Your classes are going to get harder, they are going to test your knowledge but that’s why you are there for. Some people find attending office hours or seeking extra help to be embarrassing. But these resources are there for a reason. Taking advantage of the help you are offered will not only help you prepare for future classes and learn the material better but a lot less harmful than bad grades or any other consequences of struggling.Don’t let yourself intimidated by large projects. The best thing to do, sit down a day at the assignment and break it up into smaller tasks. A lot of times…

Supervised Learning vs Unsupervised Learning vs Reinforcement Learning

Supervised Learning vs Unsupervised Learning vs Reinforcement Learning Machine learning models are useful when there is huge amount of data available, there are patterns in data and there is no algorithm other than machine learning to process that data. If any of these three conditions are not satisfied, machine learning models are most likely to under-perform. Machine learning algorithms find patterns in data and try to learn from it as much as it can. Based on the type of data available and the approach used for learning, machine learning algorithms are classified in three broad categories. Supervised learningUnsupervised learningReinforcement learning An abstract definition of above terms would be that in supervised learning, labeled data is fed to ML algorithms while in unsupervised learning, unlabeled data is provided. There is a another learning approach which lies between supervised and unsupervised learning, semi-supervised learning. Semi supervised learning algorithms are giv…

Machine Learning: A Truthy Lie?

For all these years, we all have been misguided by the term machine learning. We have been told that machines learning makes a machine capable of how to think, how to act like a human. Machine learning is the most misused term. It does not really mean what it sounds like. It is a lie, a truthy lie. What is meant by a truthy lie? Each year Merriam-Webster releases a top 10 list of most searched words. In 2003, the top word in the list was democracy. In 2004, the word blog made it to the top. The winning word for the year 2006 was trustiness, "Truth coming from the gut, not books; preferring to believe what you wish to believe, rather than what is known to be true". A word which could be a lie is used so often that it eventually feels like truth. "Bet on the jockey, not the horse" is a truthy lie. Similarly, "machine learning" has been used over time for any kind of activity to train a machine or a computer so it could think or act like a human. The word i…